Automatic Delivery Systems

Up to: What future do we want?

An automatic delivery system is a system for the transmission of material objects between homes, stores, offices etc. with as much as possible of the convenience of the telephone system used for the transmission of information. First we shall discuss how such a system might look to a user. Then we shall discuss the advantages of such as system and what it might be worth. Finally, we shall propose some ways of implementing the system and try to estimate how much it might cost.

(Except for specifically designated 1995-96 notes, this essay was written in the 1970s.)

How it looks to the user.

  1. An apartment or home or a department of a store or an office has a port into which an object may be put (perhaps in a suitable container) and a push button system for dialing destinations. After a while the object arrives at its destination. To relieve nervousness that I might be wishful thinking about matter transmission by telekinesis etc., let me say that I have in mind a mechanical system that will transport things through tunnels under the streets.

  2. I can send an object to a friend, and it will arrive at his port in a time comparable to the time required to deliver it by car.

  3. A store can send me something bought by telephone. They can send it right away, because they don't have to wait to fill a truck bound for my part of town.

  4. If we also have home computer terminals and electronic transfer of money (both of which are easier to realize than the delivery system), and if the seller is an automated warehouse rather than a store, then I can order an object at any time of the day or night and have it delivered immediately.

  5. I can send and receive mail by the system. Long distance transmission gets switched to other modes of transportation at suitable places.

  6. I can get rid of trash by sending it to the trash place.

  7. I will need to own fewer things, because I will be able to borrow or rent them with less transportation overhead. A group of people are more likely to own something in common if they can readily pass it back and forth.

  8. Home delivery of cooked meals and return of dirty dishes will be much more feasible than it is today.

The automatic delivery system will be of special benefit to children, the handicapped, and old people since it will make them more independent; it will extend the age and decrepitude at which people can live independently. I appreciate the point particularly, since I expect to be quite old before the system comes into use.

The idea of an automatic delivery system is quite old in science fiction, and its advantages are apparent. It was certainly infeasible 60 years ago when we got our last batch of public utilities. Let us consider whether it is feasible today or will be in the near future.

How it will work.

First of all, we shall try to devise a system that will work with present buildings. Something that requires new buildings will be quite hard to implement.

Therefore, imagine the following: The ports are mounted in outside walls or in windows like air conditioners are today. This requires minimal modification of buildings. The carriers do most of their travelling under the streets on continuous belts or suspended from cables, but are independently powered by rechargable batteries between the under street system and the ports. They move from the under street tunnel to the building through feeder tunnels and climb the outsides of the building to and from the ports. There are several ways this can be done having different divisions of the investment between the building modification and the carrier. If we want to put the investment in the carrier, then the building is equipped only with ``handholds'', and the carrier climbs the building with two suitable arms. If we are willing to mount cables or rails on the building, the carrier can be simpler. On the whole, it seems to me that the ``handhold''system is better, because it is more routinely adaptable to a variety of buildings and it will make the minimum change in the appearance of the building. Any version of the system requires an elaborate system for switching the carriers at the right time. This can be done by a a computer in the carrier which communicates with the central computer controlling the system.

An important characteristic of the system affecting its utility and cost is the size of object that can be transmitted. A reasonable size carrier might be rectangular with dimensions 16"x16"x48" having an internal space 12"x12"x36". The carrier would change orientation as it traveled so the contents would sometimes be upside down and accelerations of say 3g might have to be tolerated. It would be desirable to design the system as a whole to accomodate a range of sizes of carrier and so that parts of the system could be upgraded to allow larger sizes. One would probably want a lot of quite small carriers for mail and single small items, but the size mentioned above probably should be provided for in any case.

There are some safety considerations. First, there need to be guard rails to keep people and animals away from where the carriers come to the surface. Second, the carrier needs a sensor to detect that the next handhold is available and to detect excessive resistance to its motion. Ice, fallen tree branches, and damage to buildings are the most likely causes of blockage. In such a case, the carrier should stop and call for help. Perhaps it will be desirable for the carrier to have a TV camera so that a human in the control station can see what has happened and decide what to do. A smart program in the central computer may be able to decide some cases without human help.

The traffic capacity of the system will be a cause for concern. If everyone orders his dinner through the system at once, there may be bottlenecks. Capacity can be increased by providing parallel paths under streets and by having small carriers ride bigger ones until they have to branch off.

The system is obviously most cheaply constructed for a city full of new apartments, but it looks feasible even for present suburban areas, though at greater expense.

How can we estimate the expense?

A few man years of mechanical, civil, and electronic engineering could produce an estimate accurate within a factor of two with an uncertainty of a few years in how long it would take to get a system working and an factor of five estimate of the development costs. Clearly it won't be cheap, but I think we will be able to afford it in the next ten to twenty years. Here are some very rough estimates.

  1. The carrier is perhaps the easiest to estimate, because it can be compared to a car. It is much smaller than a car, and it spends most of its time riding. However, it will need a more complicated control system than a car. Therefore we estimate its cost at $500 taking into account expected large reductions in the cost of electronics.

  2. The port. Adding a port to an old building, we will guess at $500 for an old building and $200 if put into a new building. The cost of the handholds will depend on the height and shape of the building but shouldn't be more than $200 per port. The cost of the feeder from the street to the building, we estimate at $1000 to $3000 depending on the need to tear up sidewalks and streets.

  3. The communications cost is estimated at $100 per port assuming it piggybacks on the telephone system.

  4. The central computer cost for a city at present prices might be $10,000,000, but this will go down. [1995 note: It went down. If only the political problems would go down.]

  5. The biggest cost is likely to be the under street system. It includes a tunnel whose size determines the possibilities for expansion in size of object and volume of flow. It has to provide for two way traffic and to carry this traffic suspended from a cable, on a moving belt, on cars on rails, or simply to provide a right of way for the carriers if these are independently mobile. We shall suppose that the carriers contain the information and computer facilities for deciding when to switch paths.

    The cost ought to be considerably less than the cost of the streets themselves in new districts since the carriers will be more efficiently loaded than the cars that now provide delivery services. Suppose we guess $1,000,000 per mile, but a civil engineering cost study could make this more precise.

  6. Stores and warehouses will require more elaborate loading systems than homes or offices. Presumably, they will be designed to summon carriers and load them automatically. Such systems will cost from tens to hundreds of thousands of dollars and perhaps millions for institutions like the post office, Sears Roebuck, a railroad or air terminal.

Well, suppose the technology is ready in five years to make an economical automatic delivery system. (In five years, we expect electronic technology to make the communication and computation cheap, but we don't expect a cost breakthrough in construction technology by then.)

How can an automatic delivery system come into existence?

The system will be a public utility and a natural monopoly like the telephone system, electric power, gas, water, sewage, and roads. It could come into existence either by a sequence of engineering studies by the government and establishment of a government operated system or it could come into existence as a regulated utility operated by private enterprise. No important public utilities have been established recently, so it will be a new political issue. As I see it, it is more important to society that the system be built than who builds it. However, it seems more likely to be built by private enterprise, because if it is to be built by the public, there must be overwhelming agreement that this is the right way to spend government money, and such agreement will be hard to come by in the current competition for public money. The older utilities were built by private enterprise, because they thought people would be willing to pay for the service. This requires giving or selling franchises to companies formed to provide the service. It is not clear that private enterprise is as adventurous as it was in the nineteenth century. The development costs are likely to be hundreds of millions, perhaps even a few billion.

Some social consequences.

Realization of the full advantages of automated delivery will cause large changes in the operation of stores. For example, there might come to be stores with no premises where goods are kept. The goods bought at wholesale are delivered to public warehouses and delivered to customers automatically from the warehouses. The store has financial responsibility, because it buys the goods, prices them, advertises them, and sells them, all on the basis of its ideas of what the public will buy. Such a separation of the marketing function from physical goods handling functions will increase flexibility and competition and will ultimately give consumers greater choice. 1995 note: Mail order houses with overnight Fed Ex delivery have met a certain amount of this need.

Send comments to jmc@cs.stanford.edu.

The number of hits on this page since 1995 December 22.